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Abstract-The postbuckling behavior of viscoelastic composite laminated plates is considered. The
viscoelastic behavior of the single ply is characterized by a micro-mechanical theory• in conjunction
with the properties of the fibers and viscoelastic resin matrix. Higher-order shear-deformation
theory is employed to study the post-buckling phenomenon. The resulting viscoelastic effects are
shown. and comparison with lower order theories is presented.

l. INTRODUCTION

The buckling state of a structure is an important measure of the allowable loading. It is,
however, well known that a better utilization of the structure is achieved beyond the
buckling point, extending its performance into the postbuckling region. As composite
materials become extensively used in the aeronautical and aerospace industry, it is essential
to extend the postbuckling analysis to lamin<lted composite plutes. The postbuckling analy­
sis of perfectly e1ustic laminated plates was presented recently by Stein (1983, 1985) and
Zhang and Matthews (1984), for example. A comprehensive list of references can be found
in recent reviews by Leissa (1987) and Kapania and Raciti ( 1989).

Resin matrix composites (e.g. graphite/epoxy) ure well known to exhibit appreciuble
viscoclustic behuvior. This is due to the existence of the polymeric matrix which shows time­
dependent effects. A comprehensive review of the viscoelastic behavior and analysis of
composite materials was given by Schapery (1974). Since the overall behavior of unidi­
rectional composites can be described by a transversely isotropic material, one needs to
provide live independent ereep functions for the characterization of the viscoelastic
behavior. It seems that the determination of these functions is cumbersome and expensive
as it requires an extensive testing program. However, a micro-mechanical approach can
readily provide these time-dependent functions. This approach is based on the knowledge
of the properties of the fibers and the isotropic matrix. Such a micro-mechanical meth­
odology can be found in a recent review by Aboudi (1989). This micro-mechanical analysis
was applied by Yancey and Pindera (1990) for the prediction of the behavior of unidi­
rectional composites consisting of viscoelastic epoxy matrices. It was shown that the micro­
mechanical prediction correlated well with various experimental results. In Cederbaum and
Aboudi (1989), the buckling load of orthotropic viscoelastic plates was predicted.
Similarly, Chandiramani e/ al. (1989) investigated the dynamic stability of viscoelastic
orthotropic panels. In both papers, the viscoelastic properties of the composite were deter­
mined by utilizing the above micromechanical analysis.

In the present paper, the postbuckling analysis oflaminated plates made of viscoelastic
resin matrix composites is given. The viscoelastic characterization of the unidirectional
layer relies on the micro-mechanical formulation mentioned above in conjunction with the
viscoelastic behavior of the matrix. The nonlinear analysis for the postbuckling behavior is
formulated within the framework of a higher-order shear-deformation plate theory. Classi­
cal, as well as first-order plate theories are obtained as special cases of the present derivation.
For perfectly elastic plates. first-order and higher-order plate theories were presented by
Ambartsumian (1970), Librescu (1975), Reddy (1984a,b, 1987) and Librescu and Reddy
(1987). It was shown in these investigations that the incorporation of transverse shear might
be significant for anisotropic plates.
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In order to assess the accuracy of the present analysis. we present the postbuckling
behavior of perfectly elastic laminated plates composed of boron epoxy. glass epoxy and
graphite/epoxy. For these cases, the results of Chia (1980) are used for comparison. For
viscoelastic composite laminated plates. results of the postbuckling behavior are given
for a boron/epoxy material system. Deflection versus axial compressive load results are
presented for cross-ply laminates with various numbers of layers at several time intervals.
The effect of the higher-order formulation is studied by comparisons with the results based
on first-order and classical theories. The results clearly exhibit the effect of the viscoelastic
matrix on the postbuckJing behavior.

2. OVERALL COMPOSITE BEHAVIOR

2. I. Composite elastic constants
Let (xl.xz,.iJ) denote a Cartesian coordinate system with .i l oriented in the fiber

direction of a unidirectional, fiber-reinforced. elastic composite. The constitutive law for
the effective transversely isotropic behavior of such a composite is given by a micro­
mechanical analysis developed by Aboudi (1987):

ti = Ei. (I)

where ti and i are the average stress and strain in the composite. respectively. and E is the
effective stiffness tensor which describes the transversely isotropic behavior. The explicit
expressions for the elements of E in terms of the fiber and matrix properties and the
reinforcement volume ratio can be found in Aboudi (1989).

2.2. Composite viscoelastic representation
With E in eqn (I) representing the five independent elastic constants of the equivalent

transversely isotropic material which represents the unidirectional composite. it is possible
to obtain the five time-dependent functions which characterize the viscoelastic composite
whose constituents are viscoelastic materials. Each phase (IX = 1,2) is represented by
Boltzmann's superposition principle (Christensen. 1982) in tensorial notation as follows,

(2)

where cl;J,(I) are the relaxation functions of the phase (throughout this paper, Greek indices
have the values I and 2 and Latin indices run over I, 2 and 3). By applying the Laplace
transform to eqn (2) we obtain,

L[a(')] - sL[c(')] L[e(2)]
Ij - IJkl kl. (3)

where L[ •) denotes the Laplace transform and s is the transform parameter. Thus. the usc
of sL[cl;Ja in the micro-mechanics analysis (instead of d;J, in the elastic case), provides
sL[E(t)]. It follows that in the transform domain, the stress-strain constitutive law of the
composite is given according to (I) and (3) by

L[ti(t») = sL[E(t») L[i(t »). (4)

The inversion of L[E(t») back to the time domain provides the relaxation functions E(t),
while the solution of any laminate, composite-structure problem yields the corresponding
solution in the transform domain by replacing E with sL[E). The inversion to the time
domain can be performed by adopting the numerical method of Bellamn et al. (1966).
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3. ELASTIC POSTBUCKLING BEHAVIOR

3.1. Kinematics
The postbuckling analysis of cross-ply symmetric laminates is considered. In the

Cartesian coordinate system of the plate XI. X2 and XJ in which .i] = XJ. the corresponding
displacements are UI' U: and UJ. In the framework of a higher-order shear deformation plate
theory. the displacements u, and U: are expanded as cubic functions of the thickness
coordinate XJ and the transverse deflection is assumed to be constant.

U,(X I. X:. XJ) = u~(x •• x:) +XJU~ (XI. X2)+ (X]):U;(X" X2) + (x ])Ju;(x I. x:)

UJ(X •• X:) = u~(X"X2)' (5)

Here. superscripts O. t. 2 and 3 refer to the order of expansion of the displacements. It
should be noted that superscipt 0 corresponds to displacements on the midplane. superscript I
to rotations of normals to the midplane about direction ce. and superscripts 2 and 3
correspond to functions to be determined by the conditions on the top and bottom surfaces
of a laminate of thickness h.

(6)

where ax] are the transverse shear components of the stress tensor and rnx are the load
couple components (measured per unit area of the reference surface) taken to be zero.

By using the partial nonlinear strain~isplacement relationship in which the non­
linearity is taken in the 3rd direction only, i.e.

(7)

in which e'l are the strain components of the laminate. we obtain the following expression
for the transverse shear strains,

(8)

since U1,1 = o. Substitution of the displacements given by (5), yields

(9)

3.2. Cunstitutive equatiuns
From constitutive eqn (I) we obtain the expression of transverse shear stress-strain

relations.

(10)

employing eqn (10) in conjunction with (6) yields,

(II)

and u; vanishes.
Using the above displacement expansion [eqn (5)] the following expressions for the

strain components can be obtained.

e./l = e~/l+xJe~/l+(xJ)Je;/I

e.J = e~J + (XJ)2e;J

en = O. (12)
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When eqn (12) is written explicitly, products of the in-plane displacements or their
derivatives are neglected. The constitutive relations are now expressed as follows,

(13)

in which

3.3. Stress and moment resultants
From the three-dimensional equations of equilibrium,

(14)

Following Mindlin (1951), we integrate eqn (14) over the thickness Xl to obtain,

(15)

where superscripts 1,2 and 3 denote the coefficients in the expansion of 1713 (as previously
used for the expansions of the displacements and the strains).

Using eqn (12) in eqn (13) in conjunction with eqn (II) provides

( 16)

By integrating the stresses through the thickness and employing eqns (10), (12) and (13),
we obtain

(17)

( 18)

(19)

in which A, B, C, D, F, G, H, I and J are the tensorial rigidities given explicitly in the
Appendix.

3.4. Governing equations
In the absence of lateral loads, the two-dimensional equilibrium equations are,

M 2f1•f1 - N2J = 0

(20)

(21 )

(22)

Equations (20)-(22) yield five independent relations which govern the elastic field in the
laminated plate. The unknown functions are u?··, U~·I and u~, which are governed by eqns
(20)-(22). Substituting egn (18) into the governing eqn (21), and noting that the rigidities
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with odd numbers of likewise indices vanish for the case of cross-ply symmetric laminates,
we obtain the following explicit equations,

ULII[2(CIIII -Dllll)]+Ut21[2(CI122 -DI(22)+2(CI212 -Dim)]

- U~.'11(2DIIII) -u~.221(2DII22 +4D I212 )+ uLu[2(CIll2 - Dill 2)]

+(u: +u~.I)(AI313-BIJl)-{(ULII +U~.III)(Fllll+GIIII)+Ut21(FI122 +GI122)

+u~.221(FII:2+GII22)} = 0, (23-24)

where eqn (24) is obtained from eqn (23) (as written above) by interchanging indices I and
2 throughout the entire equation. Similarly, eqn (22) provides

1l~.11 {[(Il~.d2H 'III + (U~.2)2Him] - [u~.IIIIIII +u~.ul'l22] - [(U~.YJIIII + (U~.2)2J II d}

+ 41l~.12 {[(1I~.III~.2)H 1212 - u~.121Im]) + 1I~.22 {[(U~.2)2 H 2222 + (U~.1)2 H 22111
- [u~.22lm2 + U~.III221 al-[(U~.2)2Jm2 +(U~.1)2J22Iall

+(uL, +U~.I d(A 1313- BI313)+(ut2+u~.22)(A2m- B2m) = O. (25)

Equations (23)-(25) form a portion of the nonlinear system which governs the stability and
postbuckling behavior for cross-ply symmetric laminates, in which u~, II~ terms are not
given.

The boundary conditions for the case of simply supported, uniaxially loaded rec­
tangular laminated plates are,

on X2 = O.h (26)

in which Til is the axial external load and a and h are the plate dimensions in the x I and
X2 directions, respectively.

The set of three equations (23), (24) and (25) are linearized, following the adaptation
of Newton's technique in which the nonlinear terms are developed into a Taylor series, as
presented by Thurston (1965). The resulting linearized system is solved by the Galerkin
method in which the orthogonalization product of the weighted residual is integrated exactly
using the symbolic manipulation package muMATH. The following are the trial functions
which meet the requirement of being comparison functions which fulfill the above boundary
conditions in the displacements and are from a complete set,

N

u~ = L Wmll sin (axl) sin (PX2)
m.II-1

N

U?·I = L ~...I cos (axl) sin (PX2)
m,n-l

N

U~·I = L Y2,'1I1 sin (axl) cos (PX2).
m",-I

(27)

in which a = mn/a, P= nn/b and N is the number of terms in the series. Expression (27)
leads to a set of 5N linear algebraic equations in the unknown vectors {X~...I}. {Y~~} and
{Wmll }. The stress and moment resultant related boundary conditions are imposed by
employing the Galerkin method as well. So far, the analysis was carried out for the elastic
laminated plates. As mentioned before, the viscoelastic effects of the fiber and matrix phases
are incorporated by replacing the elastic E tensor by the product of the Laplace parameter
s with the Laplace transform of E(t).
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Fig. I. Central deflection vs postbuckling load of a unidirectional composite elastic plate (square,
simply supported), predicted by CPT (Chia, 1980 and present analysis) and HSDT for glass/epoxy.

boron/epoxy and graphite/epoxy material systems.

4. APPLICAnONS

A verification of the accuracy of our results was performed by a comparison with
the solution given by Chia (1980) for the postbuckling behavior of three types of perfectly
elastic. unidirectional composite plates using the classical lamination theory-CPT. The
composite plates considered are composed of boron/epoxy, glass/epoxy and the gra­
phite/epoxy material systems. The computed postbuckling curves obtained by the two
methods coincide. In Fig. I. a comparison between the postbuckling behavior of a perfectly
clastic. unidirectional square plate (all edges are simply supported) subjected to uniaxial
compression is shown. Two types of theories have been used in generating the postbuckling
behavior: CPT and higher-order shear deformation theory-HSDT. In this figure. the
central deflection 11\ (normalized with respect to the thickness h of the plate) is shown versus
the postbuckling load P (normalized with respect to the corresponding CPT buckling load
I~~"). The values of Pcr obtained through HSDT are lower than those obtained by CPT and
they yield a softer response. This is reasonable since CPT neglects the transverse shear
effects and can be derived from the shear deformation theories by assuming the shear and
Young's moduli (i.e. G IJ • G2), E) to be infinite.

A further comparison between the various plate theories applied to a perfectly elastic
cross-ply laminated plate (square, simply-supported) subjected to uniaxial compression is
given in Fig. 2. The postbuckling results obtained from CPT, first-order shear deformation
theory-FSDT (k 2 = 5/6) and HSDT are shown. It should be noted that in some cases the
value of k 2 = 2/3 involved in FSDT might yield better results than those with 5/6. It is seen
that the two shear deformation theories are in good agreement. An advantage of the HSDT,

4
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Fig. 2. Postbuckling central deflection vs load ofa perfectly elastic cross-ply laminated plate (square.
simply supported), generated on the basis of CPT, FSDT and HSDT.
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Fig. 3. Postbuckling central deflection vs time of a viscoelastic cross-ply laminated plate (square.
simply supported). generated using HSDT.

however, is the lack of the need to use shear correction factors as long as the transverse
shears are continuous across lamina interfaces.

The prescnt approach is implemented to study the effect of the viscoelasticity on the
postbukling behavior of cross-ply symmetric plates. The unidirectional ply consists of a
boron fiber-reinforced viscoelastic epoxy matrix with a 45% fiber votlume fraction. The
properties of the boron fibers are: E"1l = 443 GPa and v(f) = 0.2. which are the Young's
modulus and Poisson's ratio of the material. The time-dependent Young's modulus of the
viscoelastic isotropic matrix is given by (Chandiramani el al., 1989):

E1ml(t) = 0.55+ 1.24 exp (-0.4115IjI000) 0 ~ 1 ~ 120,000 min.

where em, is measured in GPa and 1 in min. The Poisson's ratio was taken as 0.365.
The viscoelastic postbuckling behavior of a symmetric cross-ply plate (square, simply

supported) subjected to a unidirectional compression was studied using HSDT. This
behavior is displayed in Fig. 3 which exhibits the time-dependent nonnalized central deflec­
tion of the plate. The figure shows the response at four different load levels: Pj Per =: 1.1,

HSOT
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Fig. 4. Postbucklingcentral deflection vs time of three cross-ply viscoelastic laminated plates (square.
simply supported). The results are generated using HSDT at PIP", = 2.



D. SHALEV and J. ABOLDI

[0/9OJ s

HSDT
~ 2.26

'":l

2.2 l-..__l-..__L..-__.L-__-'--__...I-_~

o 20000 ooסס4 60000

t (minI

Fig. 5. P,'sthudling (;el1tral delle(;lIol1 \S time of a (;ross-ply viSl:oelastic laminated plate (sljuare.
simply suppt,rted). generated using CPT and HSDT at Pi p;,1'T =' 2.

2. 3. 4. where Per is the buckling load of the corresponding perfectly clastic plate (i.e. at
1== 0 where buckling is predicted by HSDT). The ellcct of the viscoelastic behaviour of the
plate can be well observed.

In Fig. 4. the viscoelastic elfects of multi-layered laminated plates arc shown for
different plate thicknesses by considering [0/901.. [0/901 hand [O/90I h , stacking sequences.
The plates (square. simply supported) arc subjected to uniaxial compression.

The e1fect of the usc of CPT in analyzing a viscoelastic laminated plate is shown in
Fig. 5. The plate is of the same type as used in Fig. 3. As stated before. the postbuckling
behavior of the plate exhibits a softer performance when analyzed by shear deformation
theories. as compared with the corresponding response obtained from a CPT theory.
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APPENDIX-THE RIGIDITY TENSORS

With 2/+ I plies. m+ I as the midply and h is the ply thickness.
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